Image Retrieval with Generative Model for Typicality

نویسندگان

  • Taro Tezuka
  • Akira Maeda
چکیده

One of the most common image retrieval tasks is to find the most typical image that depicts the object specified by a query. Existing image search engines cannot efficiently do this since their search results are often a mixture of images belonging to various semantic concepts. We therefore introduce a probabilistic model for typicality. Our model consists of images, symbolic features, and latent semantic concepts (aspects). The aspect with highest probability is assumed to represent typicality. By collecting a large number of images, we can estimate parameters using EM algorithm. The estimated parameters are used to quantify the level of typicality for each image. Based on the proposed method, we have implemented a system, for ranking images by their typicality. Experiments using both artificial and real data showed the effectiveness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Typicality Ranking of Images Using the Aspect Model

Searching images from the World Wide Web in order to know what an object looks like is a very common task. The best response for such a task is to present the most typical image of the object. Existing web-based image search engines, however, return many results that are not typical. In this paper, we propose a method for obtaining typical images through estimating parameters of a generative mo...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Musical Typicality: How Many Similar Songs Exist?

We propose a method for estimating the musical “typicality” of a song from an information theoretic perspective. While musical similarity compares just two songs, musical typicality quantifies how many of the songs in a set are similar. It can be used not only to express the uniqueness of a song but also to recommend one that is representative of a set. Building on the type theory in informatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JNW

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011